Weighted projective embeddings, stability of orbifolds and constant scalar curvature Kähler metrics

نویسندگان

  • Julius Ross
  • Richard Thomas
چکیده

We embed polarised orbifolds with cyclic stabiliser groups into weighted projective space via a weighted form of Kodaira embedding. Dividing by the (non-reductive) automorphisms of weighted projective space then formally gives a moduli space of orbifolds. We show how to express this as a reductive quotient and so a GIT problem, thus defining a notion of stability for orbifolds. We then prove an orbifold version of Donaldson’s theorem: the existence of an orbifold Kähler metric of constant scalar curvature implies K-semistability. By extending the notion of slope stability to orbifolds we therefore get an explicit obstruction to the existence of constant scalar curvature orbifold Kähler metrics. We describe the manifold applications of this orbifold result, and show how many previously known results (Troyanov, Ghigi-Kollár, Rollin-Singer, the AdS/CFT Sasaki-Einstein obstructions of Gauntlett-Martelli-Sparks-Yau) fit into this framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blowing up and Desinguarizing Kähler Orbifolds of Constant Scalar Curvature Claudio Arezzo and Frank Pacard

To describe our results let us recall that, given a compact complex orbifoldM and a fixed Kähler class [ω], there is an obstruction for the existence of a Kähler constant scalar curvature (orbifold) metric, which holds in the larger class of extremal metrics. This obstruction was discovered by Futaki in the late eighties [13] in the context of Kähler-Einstein smooth metrics, was extended to Käh...

متن کامل

Blowing up and Desingularizing Kähler Manifolds of Constant Scalar Curvature Claudio Arezzo and Frank Pacard

To describe our results let us recall that, given a compact complex orbifold M and a fixed Kähler class [ω], there is an obstruction for the existence of a Kähler constant scalar curvature (orbifold) metric, which holds in the larger class of extremal metrics. This obstruction was discovered by Futaki in the late eighties [14] in the context of Kähler-Einstein smooth metrics, was extended to Kä...

متن کامل

Relative K-stability for Kähler Manifolds

We study the existence of extremal Kähler metrics on Kähler manifolds. After introducing a notion of relative K-stability for Kähler manifolds, we prove that Kähler manifolds admitting extremal Kähler metrics are relatively K-stable. Along the way, we prove a general Lp lower bound on the Calabi functional involving test configurations and their associated numerical invariants, answering a ques...

متن کامل

Twisted cscK metrics and Kähler slope stability

We introduce a cohomological obstruction to solving the constant scalar curvature Kähler (cscK) equation twisted by a semipositive form, appearing in works of Fine and Song-Tian. Geometrically this gives an obstruction for a manifold to be the base of a holomorphic submersion carrying a cscK metric in certain “adiabatic” classes. In turn this produces many new examples of general type threefold...

متن کامل

(kähler-)ricci Flow on (kähler) Manifolds

One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009